下一个最佳视图计算(NBV)是机器人技术中的长期问题,并包括确定下一个最有用的传感器位置,以有效,准确地重建3D对象或场景。像大多数当前方法一样,我们考虑了深度传感器的NBV预测。基于学习的方法依靠场景的体积表示适合路径规划,但与场景的大小相比,与使用基于表面的表示相比,相比,与场景的大小相比,准确性较低。但是,后者将相机限制为少量姿势。为了获得两种表示的优势,我们表明我们可以通过蒙特卡洛整合在体积表示上最大化表面指标。我们的方法会缩放到大型场景并处理自由相机运动:它需要输入一个任意的大点云,该点由LiDar Systems等深度传感器收集,以及相机姿势以预测NBV。我们在一个由大而复杂的3D场景制成的新型数据集上演示了我们的方法。
translated by 谷歌翻译
神经隐式表面已成为多视图3D重建的重要技术,但它们的准确性仍然有限。在本文中,我们认为这来自难以学习和呈现具有神经网络的高频纹理。因此,我们建议在不同视图中添加标准神经渲染优化直接照片一致性术语。直观地,我们优化隐式几何体,以便以一致的方式扭曲彼此的视图。我们证明,两个元素是这种方法成功的关键:(i)使用沿着每条光线的预测占用和3D点的预测占用和法线来翘曲整个补丁,并用稳健的结构相似度测量它们的相似性; (ii)以这种方式处理可见性和遮挡,使得不正确的扭曲不会给出太多的重要性,同时鼓励重建尽可能完整。我们评估了我们的方法,在标准的DTU和EPFL基准上被称为NeuralWarp,并表明它在两个数据集上以超过20%重建的艺术态度优于未经监督的隐式表面。
translated by 谷歌翻译
在简单的数据集中,在简单的数据集中开发和广泛地进行了深度多视图立体声(MVS)方法,在那里他们现在优于经典方法。在本文中,我们询问控制方案中达到的结论是否仍然有效,在使用互联网照片集合时仍然有效。我们提出了一种评估方法,探讨了深度MVS方法的三个方面的影响:网络架构,培训数据和监督。我们进行了几个关键观察,我们广泛地定量和定性地验证,无论是深度预测和完整的3D重建。首先,复杂的无监督方法无法在野外训练数据。我们的新方法使三个关键要素成为可能:上采样输出,基于Softmin的聚合和单一的重建损失。其次,监督基于深度堤map的MVS方法是用于重建几个互联网图像的最新技术。最后,我们的评估提供了比通常的结果非常不同。这表明在不受控制的方案中的评估对于新架构很重要。
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译
Vision transformers have emerged as powerful tools for many computer vision tasks. It has been shown that their features and class tokens can be used for salient object segmentation. However, the properties of segmentation transformers remain largely unstudied. In this work we conduct an in-depth study of the spatial attentions of different backbone layers of semantic segmentation transformers and uncover interesting properties. The spatial attentions of a patch intersecting with an object tend to concentrate within the object, whereas the attentions of larger, more uniform image areas rather follow a diffusive behavior. In other words, vision transformers trained to segment a fixed set of object classes generalize to objects well beyond this set. We exploit this by extracting heatmaps that can be used to segment unknown objects within diverse backgrounds, such as obstacles in traffic scenes. Our method is training-free and its computational overhead negligible. We use off-the-shelf transformers trained for street-scene segmentation to process other scene types.
translated by 谷歌翻译
Vision transformers (ViTs) encoding an image as a sequence of patches bring new paradigms for semantic segmentation.We present an efficient framework of representation separation in local-patch level and global-region level for semantic segmentation with ViTs. It is targeted for the peculiar over-smoothness of ViTs in semantic segmentation, and therefore differs from current popular paradigms of context modeling and most existing related methods reinforcing the advantage of attention. We first deliver the decoupled two-pathway network in which another pathway enhances and passes down local-patch discrepancy complementary to global representations of transformers. We then propose the spatially adaptive separation module to obtain more separate deep representations and the discriminative cross-attention which yields more discriminative region representations through novel auxiliary supervisions. The proposed methods achieve some impressive results: 1) incorporated with large-scale plain ViTs, our methods achieve new state-of-the-art performances on five widely used benchmarks; 2) using masked pre-trained plain ViTs, we achieve 68.9% mIoU on Pascal Context, setting a new record; 3) pyramid ViTs integrated with the decoupled two-pathway network even surpass the well-designed high-resolution ViTs on Cityscapes; 4) the improved representations by our framework have favorable transferability in images with natural corruptions. The codes will be released publicly.
translated by 谷歌翻译
The following article presents a memetic algorithm with applying deep reinforcement learning (DRL) for solving practically oriented dual resource constrained flexible job shop scheduling problems (DRC-FJSSP). In recent years, there has been extensive research on DRL techniques, but without considering realistic, flexible and human-centered shopfloors. A research gap can be identified in the context of make-to-order oriented discontinuous manufacturing as it is often represented in medium-size companies with high service levels. From practical industry projects in this domain, we recognize requirements to depict flexible machines, human workers and capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material (BOM) manufacturing, sequence-depended setup times and (partially) automated tasks. On the other hand, intensive research has been done on metaheuristics in the context of DRC-FJSSP. However, there is a lack of suitable and generic scheduling methods that can be holistically applied in sociotechnical production and assembly processes. In this paper, we first formulate an extended DRC-FJSSP induced by the practical requirements mentioned. Then we present our proposed hybrid framework with parallel computing for multicriteria optimization. Through numerical experiments with real-world data, we confirm that the framework generates feasible schedules efficiently and reliably. Utilizing DRL instead of random operations leads to better results and outperforms traditional approaches.
translated by 谷歌翻译
Active learning as a paradigm in deep learning is especially important in applications involving intricate perception tasks such as object detection where labels are difficult and expensive to acquire. Development of active learning methods in such fields is highly computationally expensive and time consuming which obstructs the progression of research and leads to a lack of comparability between methods. In this work, we propose and investigate a sandbox setup for rapid development and transparent evaluation of active learning in deep object detection. Our experiments with commonly used configurations of datasets and detection architectures found in the literature show that results obtained in our sandbox environment are representative of results on standard configurations. The total compute time to obtain results and assess the learning behavior can thereby be reduced by factors of up to 14 when comparing with Pascal VOC and up to 32 when comparing with BDD100k. This allows for testing and evaluating data acquisition and labeling strategies in under half a day and contributes to the transparency and development speed in the field of active learning for object detection.
translated by 谷歌翻译
Segmentation of lidar data is a task that provides rich, point-wise information about the environment of robots or autonomous vehicles. Currently best performing neural networks for lidar segmentation are fine-tuned to specific datasets. Switching the lidar sensor without retraining on a big set of annotated data from the new sensor creates a domain shift, which causes the network performance to drop drastically. In this work we propose a new method for lidar domain adaption, in which we use annotated panoptic lidar datasets and recreate the recorded scenes in the structure of a different lidar sensor. We narrow the domain gap to the target data by recreating panoptic data from one domain in another and mixing the generated data with parts of (pseudo) labeled target domain data. Our method improves the nuScenes to SemanticKITTI unsupervised domain adaptation performance by 15.2 mean Intersection over Union points (mIoU) and by 48.3 mIoU in our semi-supervised approach. We demonstrate a similar improvement for the SemanticKITTI to nuScenes domain adaptation by 21.8 mIoU and 51.5 mIoU, respectively. We compare our method with two state of the art approaches for semantic lidar segmentation domain adaptation with a significant improvement for unsupervised and semi-supervised domain adaptation. Furthermore we successfully apply our proposed method to two entirely unlabeled datasets of two state of the art lidar sensors Velodyne Alpha Prime and InnovizTwo, and train well performing semantic segmentation networks for both.
translated by 谷歌翻译
Explanations are crucial parts of deep neural network (DNN) classifiers. In high stakes applications, faithful and robust explanations are important to understand and gain trust in DNN classifiers. However, recent work has shown that state-of-the-art attribution methods in text classifiers are susceptible to imperceptible adversarial perturbations that alter explanations significantly while maintaining the correct prediction outcome. If undetected, this can critically mislead the users of DNNs. Thus, it is crucial to understand the influence of such adversarial perturbations on the networks' explanations and their perceptibility. In this work, we establish a novel definition of attribution robustness (AR) in text classification, based on Lipschitz continuity. Crucially, it reflects both attribution change induced by adversarial input alterations and perceptibility of such alterations. Moreover, we introduce a wide set of text similarity measures to effectively capture locality between two text samples and imperceptibility of adversarial perturbations in text. We then propose our novel TransformerExplanationAttack (TEA), a strong adversary that provides a tight estimation for attribution robustness in text classification. TEA uses state-of-the-art language models to extract word substitutions that result in fluent, contextual adversarial samples. Finally, with experiments on several text classification architectures, we show that TEA consistently outperforms current state-of-the-art AR estimators, yielding perturbations that alter explanations to a greater extent while being more fluent and less perceptible.
translated by 谷歌翻译